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I 
first met Stan Ulam during the war, when I was at Los Alamos as a GI, working 

in Hans Bethe's Theoretical Division. Our friendship was social rather than 
professional, for at that time I had little to contribute. I returned to Los Alarnos in 
1950 and was immediately caught up in the weapons program, spending much of 

my time in the East helping to run problems on computers in Washington, Philadelphia, 
and Aberdeen. What time remained was spent in Santa Monica consulting with the 
Rand Corporation-and courting my future wife. Fortunately, in 1953 I managed to 
get married, and that, of course, settled me down. The next six years witnessed my 
gradual conversion, under Stan's tutelage, from physicist to mathematician. 

Our collaboration started in a low key. At first it was limited to discussions-rather 
one-sided, as I recall. I listened as Stan aired his prejudices concerning mathematical 
biology as it then was (circa 1955): "It is all foolishness, don't you think?" I was in 
no position to counter these remarks, and soon he had me more or less believing them. 
One argument he advanced more than once (and which I no longer believe) was about 
the human eye. Stan could not imagine that something so complex could have evolved 
by random processes in the time available, even granting the effect of natural selection. 
Neither of us, however, could think of a practicable calculation to settle the question, 
so we turned to simpler matters. 

The first mathematical problem we undertook together, with the aid of an IBM 704 
computer, concerned the evolution of large populations under the assumption of random 
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mating, to which we added the effect of mutation. (This description of the problem may 
tempt the reader to interpret what follows in terms of Mendelian genetics. That topic, 
however, had already been treated mathematically in great detail, and our interest lay 
rather in investigating mathematical and computational approaches to other examples of 
evolutionary processes.) Stan made it very clear that he wanted nothing to do with the 
customary approach via differential equations (a la Sewall Wright); instead, everything 
was to be based on point-wise iteration. I heartily agreed. 

We characterized the "type" of an individual in the population by a pair of integer 
indices (i , j), with i ,  j = 1,2, .  . . , N. The number of males of type (i , j) was assumed 
to equal the number of females of that type; in fact, males and females were not 
distinguished, so, despite the use of the word "mating," the problem involved no sex 
(and none of the mathematical complications that go with it). The fraction of individuals 
of type (i , j )  in the nth generation of the population was denoted by x? = x p .  Random 
mating then changes the population fractions from generation to generation according 
to the equation 

The summation in Eq. 1 was carried out under the restrictions of a "mating rule," 
namely, that progeny of type (i, j )  result from mating between individuals of type (p, q) 
and (r , s)  only if 

and 

(Here min(u, v) and max(u, v )  mean, respectively, the smaller and the larger of the two 
integers u and v.) In other words, the indices of an offspring fall within the ranges 
defined by those of its parents. 

For technical reasons that I will not pursue here, we imposed simplifying conditions 
on the coefficients 7;" as follows: 

and 

$' =$" > 0 if min(u,v) < k < max(u,v), 

= 0 otherwise (in conformance with the mating rule); 

Finally, we normalized the initial population fractions x(0) by requiring that 
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It is easy to show that the normalization is preserved through all generations, or in 
other words that 

N 

To include mutation we modified Eq. 1 by adding linear terms multiplied by a 
small positive number e: 

(The added terms reflect the assumption that mutation causes type (u, v) to give rise to 
types (u + 1, v) and ( u ,  v + 1) with probability -6 . )  

We performed very many numerical experiments on the systems represented by 
Eq. 7, varying e and using special sets of coefficients satisfying Eqs. 3, 4, and 5. Two 
particularly convenient coefficient sets were 

(where the term in parentheses is the usual binomial coefficient) and 

Unfortunately, the detailed results of these experiments have disappeared over the 
thirty or so years since the computations were done. I seem to recall, however, that 
all the systems we looked at "converged; in fact, after a sufficiently large number of 
generations, only a single type remained (survival of the fittest?). I also remember that 
the convergence was not usually monotone. 

Although nothing of a detailed theoretical nature was discovered about the systems 
including mutation, the simpler systems without mutation (Eq. 1) could be analyzed 
exactly by elementary methods, even when individuals were distinguished by many 
indices rather than only two. In brief, each system, as defined by a set of initial 
population fractions, converged to a state determined entirely by that set. (Details of 
the analysis are given in Menzel, Stein, and Ulam 1959 and in Stein and Ulam 1964.) 

Our next joint project was undertaken with more mathematical aims in view, 
although Stan never lost his strong interest in biology. (A good summary of Stan's 
contributions to that field can be found in a 1985 article by Beyer, Sellers, and 
Waterman. The reader should take note of the 1967 paper by Schrandt and Ularn. 
The study of growth patterns contained therein bears a close resemblance to some 
recent work on cellular automata.) After extensive discussion, we decided to study the 
behavior under iteration of a restricted class of quadratic transformations, or maps, of 
the plane. The idea was mainly Stan's, but I managed to contribute some practical 
suggestions. 

At this point is seems appropriate to explain what it meant to collaborate with 
Stan. At some stage in his mathematical career, he apparently lost his taste for detailed 
mathematical work. Of course, his mind was always brimmming with ideas, most 
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DOMAIN OF TWO-DIMENSIONAL 
MAPS 

Fig. 1. The restrictions 0 < xi < 1 (/ = 
1,2,3) and x. xi = 1 limit the domain of the 
xi's, and of the iterates of the two-dimensional 
quadratic and cubic maps discussed in the 
text, to the equilateral triangle shown in (a). 
For more convenient graphic display of the 
iterates, we introduced the variables S = -(I + 
x, - x3) and a = 5x2 = :(1 - xi - x3). These 
new variables, and the iterates of the maps, 
are limited (by the restrictions on the xi's) to 
the isosceles triangle shown in (b). 

of them good; it was the collaborator's job to fill in the details. Stan was often of 
great help here with suggestions on how to evade difficulties, but he himself would 
not work out anything that required more than a few lines of calculation. In the late 
1940s C. J. Everett and Stan wrote three brilliant papers on branching processes in n 
dimensions-a technical tour de force. I recently asked Everett how he and Stan had 
worked together on those papers. Everett's reply was succinct: "Ularn told me what to 
do, and I did it." In my case collaboration with Stan usually involved a third person. 
I had given up programming after having had my fill of it during the first three years 
at Los Alamos. (In the last four years I have had to take it up again.) Among those 
who did my coding from time to time were Bob Bivins, Cerda Evans, Vema Gardiner, 
Mary Menzel, Dorothy Williamson, and in particular Myron Stein, who collaborated 
with me for many years until the pressure of his own work made it impossible. 

The study Stan and I made of quadratic transformations used the programming 
skills of Mary Menzel; the results appeared in 1959 as "Quadratic Transformations, 
Part I"-there never was a Part 11-under all three names. The computations were 
done on the Laboratory's own computer, MANIAC I1 (now defunct). In the following 
section I will describe that study in some detail; it will then be unnecessary to say 
much about the mechanical aspects of our later (and more exciting) generalization to 
cubic maps, since the underlying assumptions were the same. 

Quadratic Transformations a la Stein-Ulam 
Consider three variables XI,  x2, and x3 restricted as follows: 

and 
A 

X l  +X2 +x3 = 1. 
1 1  

(8) 
2 '  2) 

These restrictions limit the variables to the two-dimensional domain shown in Fig. la. 
a If we multiply out (x, +x2 + x ^ ) ~ ,  we get the six terms xf ,  x;, x:, a x 2 ,  h1x3 ,  and 

22x3. We distribute these six terms among three nonidentical boxes, no box remaining 
empty. (The boxes correspond to the transformed variables xi,  xi, and xi.) This 
distribution can be done in many ways, in fact, in 540 ways. (The distribution (4,1,1), 
that is, the distribution such that the first box contains four terms and the second and 

7 0) s third boxes each contain one term, can be done in thirty ways, as can the distributions 
(1,4,1) and (1,1,4); the distributions (3,2,1), (3,1,2), (1,3,2), (1,2,3), (2,1,3), and (2,3,1) 
each in sixty ways; and the distribution (2,2,2) in ninety.) Let us choose the distribution 
(3,2,1) to construct an example of a quadratic map. We take three terms, say xf ,  2x1x2, 
and 22x3, and form their sum; then we sum two other terms, say x i  and x:, leaving 
the term to stand alone. The corresponding map is given by the equations 

Iteration is carried out by setting xi equal to x (the first iterate) and substituting the 
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new xi's back into the right side of Eq. 9 ad infiniturn. 
Biology has not quite disappeared from the problem. If the xi's are interpreted 

as population fractions, Eq. 9 represents the evolution of a population containing three 
types of individuals randomly mating according to the following rule: 

mating between types 1 and 1, 1 and 2, and 2 and 3 produces type 1 ; 
mating between types 2 and 2 and 3 and 3 produces type 2; 
and mating between types 1 and 3 produces type 3. 

One could also write this rule as a table or a matrix, forms that are more revealing of 
the algebraic and group properties of the transformation. 

Note that if we add up the three rows of Eq. 9, we get x{ +xi +xi = (xl +xi + x ~ ) ~ ,  
which equals unity because of Eq. 8. Thus the normalization is preserved algebraically. 
Nevertheless, in carrying out the iterations on MANIAC I1 we found that D,  the sum of 
the computed xps, could be slightly different from unity because of roundoff. Therefore 
it was necessary to renormalize after each iteration as follows: x[jD + x for all i. 

The "fixed points" of a transformation (more precisely the "first-order fixed points") 
are points that remain unchanged under iteration; they are solutions to the equations 
obtained by removing the primes on the equations defining the transformation. The fixed 
points for the map given by Eq. 9 are easily determined. First note that XT, = 2x1~3 
(obtained from the third row of Eq. 9) implies that x3 = 0 or XI = i. These possibilities, 
together with XI = x; + 1x\x-i + 2x2~3 (obtained from the first row of Eq. 9) and the 
restriction XI +x-) +x3 = 1, lead to two "nodal" fixed points, (1,0,0) and (0,1,0), and one 
"internal" fixed point, (i , (2 - d), A). 

How does the map given by Eq. 9 behave under iteration? Experimentally, if we 
choose an initial point (xi ,x-),x3) at random, it is highly probable that the successive 
iterates will converge to the map's internal fixed point. For some initial points, including 
those such that x3 = 0 and xl #O, the iterates converge to the nodal fixed point (1,0,0). 
(The other nodal fixed point is nonattractive: iterates diverge from (0,1,0) no matter 
how close to that point an initial point may be.) So this map has two attractive limit 
sets, or attractors, each characterized by its "basin of attraction" (the set of initial points 
that iterate to the attractor). 

As mentioned above, there are many more maps of the present kind, which we 
called binary reaction systems. Fortunately, we needed to examine only those that 
are inequivalent, that is, those that cannot be transformed into each other by some 
permutation of the indices on the xi's and the x,"s (the order of the rows clearly does 
not matter). It turns out that precisely 97 of the possible 540 maps are inequivalent 
according to this criterion. The fixed points of all the inequivalent maps were worked 
out by hand (Stan himself verified some of those calculations), and their limiting 
behavior under iteration from several randomly chosen initial points was examined 
numerically. The latter was a very slow process in 1958: MANIAC I1 could perform 
only about fifty such iterations per second. Of course, MANIAC I1 was a stand-alone 
"dedicated" machine, and that helped make up for its lack of speed. 

For more convenient graphic display of the results, we arbitrarily introduced two 
new variables 

DEPENDENCE OF LIMIT SET ON 
INITIAL POINT OF ITERATION 

Fig. 2. A few of our two-dimensional quadratic 
maps exhibited one of two limiting behaviors 
under iteration, depending on the location of 
the initial point. For example, the map defined 
by the equations below (in both xi and S, a 

coordinates) iterates to an internal fixed point 
(s = 0.62448516, a. = 0.09239627) from any 
initial point within the dark gray region of the 
reference triangle and to a nodal period of or- 
der 3 ((0,O) + (-, ;) + (1,0)) from any initial 
point within any of the three light gray regions. 
The "separatrix" demarcating the basins of at- 
traction of the two limit sets was determined 
experimentally. 
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THREE-DIMENSIONAL QUADRATIC 
MAPS WITH INFINITE LIMIT SETS 

Fig. 3. The limit sets of a small fraction of 
our quadratic transformations in four variables 
contain what appear to be infinite numbers of 
points. Shown below are three-dimensional 
projections of four such limit sets, which were 
obtained by photographing plots of succes- 
sive iterates on an oscilloscope screen. The 

set of axes in the center of each display indi- 
cates the orientation of the limit set relative to 
the viewer, who is conceived of as stationed 
at a certain distance from the origin along the 
x* axis. The limit set for Ta consists of two 
"curves," one in the x1 , x3 plane and the other 
in a plane inclined at 45" to the x1 , x3 plane. 
Ta evidently transforms these planes into each 
other, since successive iterates lie alternately 
on the two curves. The limit sets for Ti,, T,., 
and Td are even more complicated, constitut- 
ing implausibly tortuous curves in space. 

The domain of these new variables is an isosceles triangle in the S ,  a plane, with unit 
base and half-unit height (Fig. lb). Note that the vertices of this "reference triangle" 
correspond to the nodal points of the original domain. 

What we found was less than overwhelming. One transformation had an internal 
periodic limit set of order 3 (that is, its limit set consisted of three internal points 
traversed in a certain order), four had internal periods of order 2, one showed no 
limiting behavior at all, and one converged to an internal fixed point as 1, where r is the 
distance of the iterate from the fixed point. In addition, a few maps had a "separatrixyy 
(Fig. 2); that is, they showed one of two limiting behaviors (usually convergence to 
a fixed point or to a periodic limit set of order 2) depending on the location of the 
initial point. Everything else converged to a fixed point (not necessarily internal) or 
had nodal periods of order 2 or 3. The interested reader will find a description of the 
many generalizations we tried in Menzel, Stein, and Ulam 1959. 

Cubic Maps and Chaos 

Although some interesting facts emerged from the study described above, Stan and 
I were disappointed at the lack of variety in the limiting behavior we observed. We 
even tried to enliven the situation by generalizing the generic map to the form 

with the coefficients randomly chosen but restricted by 0 < dij <. 1 for all i ,  j and 
~3 d i  = 1. Of several hundred such systems investigated, almost all iterated to a 

fixed point; in other words, the special quadratic maps we had originally looked at were 
more interesting than the general case. 

What to do? Stan and I had, simultaneously, the idea of looking at three-variable 
cubic maps of the same structure as our quadratics. That is, we would distribute the 
ten terms arising from expansion of (xi +x^ + x ^ ) ~  among three boxes and construct the 
maps in the same way as before. A short calculation (see pp. 7-8 of Stein and Ulam 
1964) showed that there were more than 9330 inequivalent maps of this type. (The 
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4 Fig. 4. Shown in (a) is one of two possi- 
ble limiting behaviors for the map defined by 

the given equations, namely, convergence to 
a "mess," an apparently infinite number of 

points with a complex distribution and no dis- 
cernible structure. The map iterates to this 
messy limit set from any initial point within 

any of the light gray regions in (b). If, how- 
ever, the initial point lies within any of the 
dark gray regions, the map iterates to the fixed 

point & = 0.6259977, a0 = 0.1107896. The 
complicated separatrix was determined exper- 

imentally. 

exact number turned out to be 9370, arrived at by a more complicated combinatorial 
calculation.) Perhaps among this plethora of possibilities we would find some systems 
that showed truly unexpected limiting behavior. I am happy to say that the results far 
exceeded our expectations. 

We also considered transformation in three dimensions, specifically quadratics in 
four variables with XI + XT + XXT, + x4 = 1. But 34,337 of these are inequivalent (not an 
easy fact to come by), so we were never able to give them the attention they deserved. 
(Figure 3 gives a glimpse of some interesting cases.) Unless someone writes a fast 
program to evaluate automatically the amusement value of limit sets, that is as far as 
such studies will ever go: the case that comes next (when ranked by the number of 
inequivalent maps) is that of quartics in three variables, and more than 3,275,101 of 
these are inequivalent (the exact number is unknown). 

Returning to our study of cubic maps, we plotted the sets of points obtained 
by iteration on an oscilloscope screen in the reference triangle of Fig. lb. "Hard 
copy" was obtained directly from the screen with a Polaroid camera mounted on the 
oscilloscope. This method, in addition to being cheaper, was more convenient than the 
current method, which involves a $20,000 Tektronix terminal with a hard-copy device. 

There is not enough space to give all the details of what we found; an extensive 
summary is given in Stein and Ulam 1964, and Figs. 4-7 show some interesting 

Fig. 5. The two-dimensional cubic map defined 

by the given equations iterates to an infinite 
limit set composing the closed curve shown in 
(a). (Whether the words "infinite" and "curve" 
can be applied here in the strict mathematical 

sense is not known.) When this map is iter- 
ated from some point p in the limit set, suc- 
cessive iterates do not trace out the curve in 
an orderly fashion. However, the 71st, 142nd, 

213th, . . . , (71 n)th, . . . iterates of p, which are 
plotted in (b), do lie close to each other and 

trace out the curve in a clockwise direction. 
Various stages in the iteration of this map are 
featured in the art work on the opening page of 

the article. The first image (counted from back- 
ground to foreground) shows the set of points 
at which the iterations were begun, namely 

twenty-one points uniformly distributed along 
a line segment whose midpoint i s  coincident 

with the nonattractive fixed point of the trans- 
formation. (The horizontal and vertical coor- 
dinates of this fixed point are approximately 

0.6149 and 0.1944, respectively.) The second 
and third images, which are superpositions 

of the 8th through 15th and the 15th through 
22nd sets of iterates, respectively, capture the 
dynamics of these early iterations. The final 

image, a superposition of the 1800th through 

2700th sets of iterates (and the same as that 
in (a) here), shows the stable pattern to which 

the sets of iterates converge. 
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TWO AMUSING INFINITE LIMIT SETS 

Fig. 6. Examples of two-dimensional cubic 
maps with infinite limit sets constituting (a) 

a more irregular closed curve than that illus- 

trated in Fig. 5 and (b) three separate closed 
curves. 

A PARTICULARLY FASCINATING 
INFINITE LIMIT SET 

Fig. 7. The infinite limit set of the two-dimen- 
sional cubic map defined here consists of 
seven separate subsets. Each subset is in- 

variant under the seventh power of the trans- 
formation; that is, if p is a point in any one of 
the subsets, the 7th, 14th, 21st, ,... (7n)th, ... 
iterates of p are also in that subset. Shown 

magnified in the inset are the 7th, 14th, 21st, 
..., 2695th iterates of a point in the outlined 
subset of the limit set. 

examples of limiting behavior. Again, a large majority of the transformations converged 
to fixed points or to periodic limit sets (some of quite high order). Of most interest 
to us, however, were 334 transformations that exhibited no periodic limiting behavior, 
suggesting that their limit sets contained infinite numbers of points. Some of these 
appeared to be closed curves or sets of closed curves, although to this day not one 
has been shown to satisfy the mathematical criteria for a curve. Others bore a striking 
resemblance to the night sky; at the time these strange limit sets were commonly 
referred to as messes. 

The transformation that iterated to the mess shown in Fig. 8 was studied in great 
detail and received the special name TA. For the record I give its definition here, both 
in xi and S , a coordinates. 

and 
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Tn has an unstable (nonattractive) internal fixed point; its approximate coordinates are 
So = 0.5885696 and a 0  = 0.1388662. Some twenty years after the appearance of 
our paper, TA was examined on a Cray computer by Erica Jen. The results strongly 
suggested that its limit set is what is today called a strange attractor, with a fractal 
(noninteger) dimension of about 1.7. The term "strange attractor" was coined by Ruelle 
and Takens in 1971 in the course of a study of turbulence. Strange attractors are now 
known to arise often during iteration of the nonlinear differential or difference equations 
used to describe phenomena in, for example, meteorology and fluid dynamics. 

Several other messes have been classified as strange attractors by present-day 
criteria, the main one being sensitive dependence on initial conditions. That is, a limit 
set is a strange attractor if any two points within the set, no matter how close, move 
farther and farther apart under the action of the mapping. If the limit set is bounded 
away from infinity (as it is here), the points cannot keep moving apart, and the criterion 
then is that the relative positions of the limit points become uncorrelated-a feature 
of chaos. Unfortunately, no numerical experiment can prove that some limit set is a 
strange attractor. For example, what appears to be a strange attractor may actually be 
a periodic limit set of very high order. To my knowledge, rigorous measures of the 
likelihood that a computer-generated limit set is a strange attractor have not yet been 
developed. 

Having said that, I shall pretend that some of our cubic maps do illustrate strange 
attractors. How can those maps be studied farther? One way is to introduce another 
variable 6 (0 < 6 < 1). Letting S f  = F (S , a )  and a' = G(S , a )  denote the defining 
equations of the map (cf. Eq. 1 lb), we write a new set of equations as follows: 

Note that 8 = 1 corresponds to the original map. (If 6 = 0, Eq. 12 reduces to the 
identity transformation.) So long as 6 lies in the given range, the first-order fixed 
points are independent of this parameter. The original system may have a nonattractive 
fixed point; it cannot, of course, be found by iteration. If, however, the fixed point 
can be made attractive by decreasing 6 (from unity), then iteration can be used, thus 
avoiding some messy algebra. In fact, a sufficient decrease in 6 will-in almost all 
cases-decrease the absolute value of both eigenvalues of the Jacobian matrix of Eq. 12 
to less than unity at the fixed point, which is precisely the criterion for the attractive 

THE INFINITE LIMIT SET OF 
Ti-A "MESS" 

Fig. 8. The transformation TA (see text for 
defining equations) is one of our two-dimen- 
sional cubic maps that iterates to a mess. 
Shown in (a) is its messy limit set; its nonat- 
tractive fixed point has been superimposed on 
the photograph. The magnifications in (b) and 
(c) reveal ever greater complexities. 
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EFFECT OF 6 ON THE LIMIT SET 

Fig. 9. Our two-dimensional cubic maps can 
be generalized by introducing the parameter 6 
as described in the text. Shown here is the 
effect of varying this parameter on the messy 
limit set of TA (see Fig. 8). As 6 is decreased 
from unity, the limit points at first coalesce into 
seven distinct bunches, forming what we call a I 
pseudo-period. (a) Then at 6 Ã 0.9930, the in- 
finite limit set becomes periodic (and hence fi- 
nite), with an order of 7. (b) This configuration 
persists over a range of 6 values, although the 
coordinates of the limit points vary. (c) Then 
at 6 Ã 0.9770, the periodic limit set changes 
into a closed curve. (d) As 6 is decreased fur- 
ther, the curve becomes smaller and smaller, character of such a point. This is the fact that motivated the introduction of 6, but 

Finally, at 6 s= 0.9180, the curve collapses to the effect of its variation turned out to be much more interesting than we expected. 
a single point, the nonattractive fixed point of Decreasing 6 may cause a remarkable change in the appearance of a messy limit set 
the original transformation (6 = 1). (Fig. 9). Points may start to cohere, forming a pattern of disjoint arcs. Further decrease 

of 6 may lead to a periodic limit set of finite order, which persists over a range of 6 
values. As 6 approaches the value at which the limit set collapses to the fixed point, the 
set may metamorphose into a closed curve (at least something that looks like a curve) 
that shrinks continuously with 6. This behavior is typical; even more complex changes 
have been observed in some cases (Fig. 10). 

Another way to study cubic maps with messes as their limit sets is to vary the 
coefficients. This is done just as it was for the quadratic maps, but the results are far 
more dramatic. Figure 11 shows a few examples of the fascinating behavior that has 
been observed. Here the coefficients constitute a twenty-parameter set, so exploration 
of all possibilities is not feasible; the usual practice is to vary the coefficients of one 
or two terms at a time. Much numerical work of that type was done at the Laboratory 
in 1984 and 1985 on a Cray computer, and many new strange attractors turned up. 
The aim of this work is to find some "structural" (geometric or algebraic) principle 
underlying the relatively bizarre phenomena our computer screens reveal. 

One-Dimensional Maps and Universality 

The first part of this section is a historical note on the origins of a 1973 paper 
by Metropolis, Stein, and Stein. The paper dealt with a certain universal structure and 
hierarchy of the periodic limit sets that can arise in the iteration of one-dimensional 
maps; it has been cited by Mitchell Feigenbaum as a source of inspiration for his later 
work on the universal nature of the approach to chaos by "period doubling." 

The origins of our paper lie in the work discussed above by Stan and me on cubic 
maps. We had found fifteen or sixteen that had the property of transforming a pair of 
sides of the S a reference triangle into each other. It is clear that the "square" of such 
a map (the second iterate) transforms one side of the triangle into itself, and the map 
is therefore one-dimensional. We rewrote some of these as maps defined on the unit 
interval and iterated them on MANIAC 11. In every case we obtained a periodic limit 

Los Alarnos Science Special Issue 1987 



An Ulamian Potpourri 

set of high order (1500 or thereabout). We had reasons for thinking that these results 
were spurious, caused by the limited precision of the machine, and that what we were 
seeing were artifacts. Indeed, when we iterated the two simpler maps 

x ' =  4x(l - x), 0 < x < 1 

and 

we also found high-order periods. For these maps, however, it was easy to prove that 
no such limit sets could exist, so our suspicions were confirmed. A year or two later 
the IBM 7030 ("Stretch") became available. With its larger word size, it failed to 
reproduce our impossible periods. 

In 1970 Nick Metropolis and Myron Stein joined me in an attempt to find out 
what was really going on in all these one-dimensional examples. Of course, we could 
not resist generalizing the problem slightly by introducing a parameter A, essentially 
the height of the map in a plot of x' versus x. For instance, instead of Eqs. 13a and 
13b we wrote 

x'=\x(l-x), 0 < x < l a n d 3 < A < 4  

and 

The restrictions on A insure that the iterates of the maps lie within the specified x 
interval and that the nonzero first-order fixed points of the maps are nonattractive. 
(Equation 14a, the "parameterized parabola," is well known in ecology as the logistic 
equation. It is a transform of a quadratic map studied in the early sixties by the Finnish 
mathematician P. Myrberg. Had we been aware of his study, considerable time would 
have been saved.) 

Equations 14a and 14b are examples of maps of the general form 

where f (x) is defined on the interval [0,1] and has a single maximum (at which 
dxf/dx = 0). For simplicity we placed the maximum at x = \ and at first restricted 
ourselves to functions symmetric about that point. This restriction does not affect the 
results presented in the "MSS" paper (a name due to Derrida, Gervois, and Pomeau). 
We also required f (x) to be strictly concave; relaxing this requirement can have drastic 
effects, as we learned later. 

ANOTHER EXAMPLE OF THE 
EFFECT OF 6 ON A MESSY LIMIT SET 

Fig. 10. An even more striking example of the 

effect of varying 6 on a messy limit set. (a) 
The limit set for the original two-dimensional 
cubic map (6=1) consists of three separate 
pieces. Photographs (c) through (g) focus on 
the changes that occur in the piece shown 
in greater detail in (b); similar changes occur 
in the other two pieces. As 6 is decreased 
monotonically from unity, the limit points (c) 
consolidate, (d) form a set of disjoint arcs, (e) 
disperse, (f) collapse to a periodic limit set 
of order 26, and (g) form a closed curve that 
eventually collapses to a single point. 
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EFFECT OF COEFFICIENTS ON THE 
LIMIT SET OF Ta 

Fig. 11. Our two-dimensional cubic maps can 
also be generalized by varying the coefficients. 
In the examples above the transformation TA 
was modified by varying only two coefficients. 
The photographs show the dramatic effect of 
such modifications on the messy limit set of TA 
(Fig. 8). The modification given in (a) changes 
the mess into a seven-member set of closed 
curves, one of which is shown in detail. The 
very similar modification given in (b) changes 
the mess into a pseudo- period of order 7, that 
is, into seven distinct bunches of points, three 
of which are shown in detail. The modification 
given in (c) results in a remarkably different 
but still messy limit set. 

In addition to the parabola and the sine, we also studied two other functions sat- 
isfying the conditions given above. One, a sixth-degree polynomial, was the transform 
to the unit interval of one of the one-dimensional cubic maps mentioned previously; 
the other was a trapezoid (in the X'J plane). 

For all four maps we calculated the periodic limit sets of order k that begin and 
end with x = i. These correspond to A values that are solutions of 

and are necessarily attractive because of the condition that d ~ ' { d x \ ^ ~  = 0. (This 
condition guarantees what is referred to as superstability.) To characterize the limit 
sets in a function-independent way, we used the minimum distinguishing information, 
namely, the positions of the successive iterates relative to x = i. For this purpose 
we employed the letters R and L ("right" and "left"). For example, when k = 5, all 
our maps have three distinct periodic limit sets of order 5, each associated with a 
different value of A. Naturally, for different functions the A values are different, as 
are the actual values of the iterates, but the R ,  L (or MSS) patterns are identical. The 
three patterns for k = 5, in order of increasing A, are h Ã R + L + R Ã R Ã‘ i ,  

Ã R Ã L + L + R -+ 2, and $ Ã R + L ^L  ̂L +. Omitting the initial and 
final i 's, we may write these patterns in simplified form as R L R ~ ,  RL^R, and R L ~ .  

The identity of the MSS patterns and their ordering on A was found to hold among 
all of our four functions for all values of k such that 2 < k < 15. We immediately 
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THE "INDENTED TRAPEZOIDy' MAP 

Fig. 12. Because it is not strictly concave, the 
"indented trapezoid" map exhibits "multiplic- 
ity"; that is, it does not exhibit a one-to-one 
correspondence between MSS patterns (see 
text) and A values. In particular, for certain 
ranges of the parameters b and c, some of the 
patterns correspond to three values of A. 
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noted the phenomenon that Feigenbaum later called period doubling. As an example, 
consider the period of order 2, the pattern of which is R. The patterns of its first two 
doublings are RLR (k = 4) and RLR~LR (k = 8). A simple rule relates the pattern P 
of a given period and that of its doubling: if P contains an odd (even) number of R's, 
the pattern of its doubling is PLP (PRP). Note that P must be an MSS pattern; that is, 
it must begin and end at the x value for which x' is maximum. (Obviously, not every 
R, L succession is such a pattern.) 

Period doublings are, of course, ordered on increasing A. The A values corre- 
sponding to two successive doublings, A1 and Az, are "contiguous" in the sense that no 
A between Ai and As corresponds to a periodic limit set beginning at 1, 

Our initial work indicated that a large class of maps generates the same sequence 
of patterns ordered on increasing A. Later experiments on some fifty additional maps A 

confirmed this conclusion. It is still not known exactly, however, how this "large class" 
(almost certainly infinite) should be defined. 

- 

One of the most interesting results presented in the MSS paper is an algorithm for 
x ' 

generating the MSS sequence. No iterations are needed, and no functions are explicitly 
specified. The algorithm is purely logical; given a limiting value kmax for the period 
order, it produces all MSS patterns with k < kmax in the canonical ordering (that is, 
on increasing A). An independent proof of this algorithm is given for trapezoidal maps 
in Louck and Metropolis 1986. Others have found new algorithms for generating the 
MSS sequence, but, in my opinion, none of these are substantially simpler than ours. 

Since the publication of these results, many mathematicians and physicists have 
studied one-dimensional maps, but much more work has been done on Feigenbaum's 
"quantitative" universality than on the "structural" universality represented by the MSS 

(030) x 
sequence. A few years ago Bill Beyer, Dan Mauldin (of North Texas State University), 

(1 ' 0) 

and I initiated new attacks on some of the problems suggested by MSS. We also 
considered a few new questions. One of these has to do with maps that exhibit a multiple 
appearance of some MSS patterns. If a map is strictly concave, it is our conjecture that 
each pattern occurs for just one value of A. We found that something else can happen 
otherwise. Consider the "indented trapezoid" map shown in Fig. 12, which is not 
strictly concave. For certain ranges of the parameters b and c, the same MSS pattern 
corresponds to three different A values. (This phenomenon implies that Feigenbaum's 
quantitative universality, which hinges on the occurrence of period doublings at unique 
A values, is not applicable to certain maps and hence is less than truly universal.) 

Our multiplicity, as we called it, is more than an interesting mathematical fact. It 
has helped in understanding the latest results of an extensive study of the Belousov- 
Zhabotinskii reaction by H. L. Swinney and his collaborators. (The B-Z reaction, the 
oxidation of malonic acid by an acidic bromate solution in the presence of a cerous ion 
catalyst, is an oscillating chemical system, that is, a system in which the concentrations 
of the chemical species do not vary monotonically with time but instead oscillate, 
sometimes chaotically, sometimes periodically.) In 1982 Simoyi, Wolf, and Swinney 
had identified certain members of the MSS sequence in the periodic concentration 
variations of the bromide ion, one of some thirty chemical entities involved in the 
reaction. In addition they found that the MSS patterns observed were ordered on 
a parameter r (the residence time of the reactants in the reaction vessel, which is 
inversely proportional to their rate of flow through the vessel) in exactly the same 
manner as the patterns in the MSS sequence are ordered on A. Several years later 
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Coffman, McCormick, and Swinney made further measurements on the system, this 
time controlling the flow rate much more precisely. Again they found members of 
the MSS sequence, but some of the patterns occurred for three values of T. At that 
time they knew nothing of our recent work on the indented trapezoid and suspected 
that their strange results were due to some systematic error. How they came to learn 
of multiplicity was a matter of pure chance. Swinney was visiting North Texas State 
(where Mauldin teaches mathematics) to give a talk. His hosts, looking for some way 
to amuse him between lunch and the colloquium, brought him to Mauldin's office. To 
pass the time, Dan started to discuss our discovery. Swinney immediately realized that 
what he and his colleagues had seen was not, after all, an artifact. They went on to 
identify the analogue of the indentation parameter c as trace impurities in one of the 
reactants. It is certainly gratifying when some purely mathematical construct helps to 
explain physical reality. 

Number Theory 

Stan Ulam's name seems to have disappeared from these pages; it is time to bring 
it back, if only briefly. Stan was not a number theorist, but he knew many number- 
theoretical facts, some of them quite recondite. As all who knew him will remember, 
it was Stan's particular pleasure to pose difficult, though simply stated, questions in 
many branches of mathematics. Number theory is a field particularly vulnerable to the 
"Ularn treatment," and Stan proposed more than his share of hard questions; not being 
a professional in the field, he was under no obligation to answer them. 

Stan was very much interested in "sieve" methods-the sieve of Eratosthenes 
to generate the primes is the most famous-but from an experimental rather than an 
analytic viewpoint. He was always trying to invent new sieves that would generate 
sequences of numbers that were in some sense prime-like. His greatest success was 
the "lucky number" sieve (the name is derived from a story in Josephus's History of 
the Jewish War). In Eratosthenes's sieve one crosses out 1 from a list of the integers 
and then, keeping 2 (the first prime), crosses out all of its other multiples. The first 
survivor after 2 is 3, so next one crosses out all of its higher multiples, and so on. 
In the lucky number sieve one first crosses out every second number, that is, all the 
evens; in fact, one throws them out of the list, which is consequently collapsed. The 
first survivor after 1 is 3, so, again starting from the beginning, one throws out every 
third number, collapsing the list further. The next survivor is 7, so one then throws out 
every seventh number, and so on. The first ten lucky numbers are 1, 3, 7, 9, 13, 15, 
21, 25, 31, and 33. All lucky numbers less than 3,750,000 were known by the early 
sixties. (Compared to the sieve for the primes, the lucky number sieve is rather slow.) 
Perhaps progress has been made, but I doubt that the range has been increased by a 
factor of 100 to match our current knowledge of the primes. 

Although the lucky numbers are clearly not a multiplicative basis for the integers, 
they do have some prime-like properties. For example, their asymptotic distribution is, 
to first order, the same as that of the primes (Hawkins and Briggs). The luckies are, 
however, somewhat sparser than the primes, as, if I am not mistaken, Stan predicted. 
(Expressions for pn , the nth prime, and 4 , the nth lucky number are 

pn = n Inn + n ln(1n n) + higher order terms 
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ana 
1 2 

in = n Inn + -n (ln(1n n)) + higher order terms. 
2 

Of course these expressions make sense only for large n. Nevertheless, if we (reck- 
lessly) disregard the higher order terms, they imply that in > p,, for n > 1619. In fact, 
however, we find that in > pn for 1 1 < n 5 3,750,000.) The distribution of the lucky 
numbers is similar to that of the primes in another respect: there seem to be an infinite 
number of lucky "twins," that is, luckies whose difference is 2. The evidence for this 
is far from overwhelming because the lucky sieve is hard to implement on a computer. 

What I learned from Stan's ventures into number theory was that amateurs can 
make useful contributions to the field. That moved me to launch an attack on my 
favorite classical problem, the Goldbach conjecture. This is the statement, made by 
Christian Goldbach in a letter to his friend Euler, that every even integer equal to or 
greater than 6 is the sum of two odd prime numbers in at least one way. It remains 
unproven to this day, although very few mathematicians have doubts about its truth. 
Curiously, the analogous problem for odd integers, namely, that from some point on, 
each is the sum of three odd primes, was proved by Vinogradov in 1937. His original 
proof is long and difficult; it may have been at least a decade before its correctness was 
generally admitted. As for the Goldbach conjecture, the best result to date is that all 
sufficiently large even integers can be expressed as the sum of a prime and an integer 
that has at most two prime factors. This result, due to J.-R. Chen, is considered to be 
the greatest triumph ever achieved by sieve methods. That the Goldbach "property" 
is true for lucky numbers was conjectured by Stan, and work by Myron Stein and me 
gives some support. Stan's conjecture should not be too surprising in view of a 1970 
study by Everett and me, which shows that almost all sequences with overall prime-like 
distributions have both the twin property and the Goldbach property. (Here "almost 
all" is to be understood in a measure-theoretic sense.) 

In the mid sixties Myron Stein and I decided to look at the Goldbach problem 
numerically. We started by examining the so-called Goldbach curve, that is, the plot 
versus the even numbers of the total number of ways of expressing each as the sum 
of two primes. The curve is rather bumpy, usually peaking locally at multiples of 6 
(as explained in the introduction to Stein and Stein 1964). Clearly many more primes 
exist than are necessary to constitute an additive 2-basis for the even numbers. This 
motivated us to look for sparse subsets of the primes possessing that property ("S" 
bases). We found a good algorithm (the S algorithm) for producing such subsets; each 
is completely determined by the choice of a smallest prime po. Our S bases cover 
almost all the evens from 2po to 10,000,000, leaving uncovered only a few low evens 
at the start. The sparseness achieved is striking; with one exception the S bases consist 
of less than 1.6 percent of the primes less than 10,000,000. The exception is the basis 
beginning with 7, which contains roughly twice as many primes as any other (a fact 
still unexplained). Our conclusion from this work is that the Goldbach property does 
not critically involve the famous prime property of being a multiplicative basis for the 
integers. 

In concluding I must mention that the above investigation of the Goldbach problem 
moved the number theorist Daniel Shanks to convey on those involved the title "Los 
Alamos School of Experimental Number Theory." As to this new institution, there is 
no doubt that Stan Ulam was the founder. 
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Paul R. Stein has been a staff member at the Laboratory since 1950, working on problems that range from 
mathematical biology to nonlinear transformations and experimental number theory. 
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